1455

Alanine-derived Hosts Comprising a Roof-shaped Carbonimide Framework. Synthesis, Inclusion Formation and X-Ray Crystal Structures of Racemic and Optically Resolved Free Hosts, and their Crystalline Complexes with 3-Methylcyclohexanone

Edwin Weber,^{*,a} Christiane Reutel,^a Concepción Foces-Foces^{*,b} and Antonio L. Llamas-Saiz^b ^a Institut für Organische Chemie der Technischen Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sa., Germany ^b U.E.I. de Cristalografía, Instituto de Química-Física 'Rocasolano', CSIC, Serrano 119, E-28006 Madrid, Spain

A chiral crystalline host molecule derived from the amino acid alanine comprising a characteristic 9,10dihydro-9,10-ethanoanthracene-11,12-dicarboximide framework as an inclusion-promoting group has been synthesized in optically resolved and racemic forms and studied with regard to their inclusion behaviour. Dependent on the optical resolution state, this host forms crystalline inclusion compounds with a great variety of uncharged organic molecules ranging from protic dipolar to rather apolar compounds (78 different inclusion species) with the racemic host being more efficient. X-Ray crystal structures of the optically resolved and racemic uncomplexed host species and of their 1:1 inclusion complexes with 3-methylcyclohexanone are reported. The host hydroxy groups are always involved in $O-H \cdots O=C$ intramolecular hydrogen bonds. The crystal packings of both complexes are analogous, showing similar cell dimensions and space groups $P2_1$ and $P2_1/a$. Moreover, the two independent molecules in the resolved complex are almost related by a pseudo centre of symmetry.

Organic supramolecular solid state chemistry¹ including clathrate formation² and crystal engineering³ are a great challenge owing to the potential uses in compound and isomer separation,⁴ in topochemical reactions⁵ and in materials sciences.⁶ With reference to the latter field, very recently, clathrates have attracted attention as sensor coatings.⁷ This has stimulated development of new strategies in cocrystallization and motivated the design of novel host types.^{1,2} Coordinationassisted clathrate formation between functionalized hosts and polar guest components is one particular entry⁸ and among the many new types of polar host structures,² compounds that feature a molecular roof are prominent examples.⁹ In fact, the roof-shaped 9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximide framework has proved an efficient 'clathratogenic group'.¹⁰ On the other hand, the design of crystalline chiral selectors based on optically active natural compounds is very challenging.11

We report here amalgamation of the principles, as shown by formula 1 where the characteristic imide skeleton from above and a particular building block derived from amino acid alanine are brought together. We describe synthesis and crystal inclusion properties, considering both the optically resolved and racemic forms of compound 1 (1a and 1b), and present crystal structures of free host compounds and of inclusion compounds with 3-methylcyclohexanone. This makes possible correlation of the inclusion properties and of the packing principles with chirality.

Results and Discusion

Synthesis.—Host compounds 1a and 1b were synthesized in three steps from L- and D,L-alanine, respectively, in 33 and 30% overall yields, by conversion of the amino acids into the corresponding ethyl ester hydrochlorides 2(a, b) followed by Grignard reaction with bromobenzene to give aminopropanols 3(a, b) and reaction with anhydride 4. The crystalline inclusion

compounds were obtained by single recrystallization of the host compound from the respective guest solvent.

Inclusion Properties.—A total of 78 different inclusion compounds are specified in Table 1, showing the efficiency of the new host design in general. Nevertheless, the racemic host **1b** is much more effective in the enclathration of polar and apolar organic molecules as compared to the optically resolved species **1a**. This is particularly obvious for the hydroxylic guests where **1b** forms numerous inclusion compounds with alcohols of different size and shape while **1a** yields only very few inclusions (with cyclohexanol and 2-methylcyclohexanol) under

 Table 1
 Crystalline inclusion compounds

compound	
Guest solvent 1a 1b	
РгОН — 2:1	
Pr'OH — 2:1	
Bu'OH - 2:1	
$\begin{array}{ccc} Bu^{3}OH & - & 2:1 \\ D & 1OH & & 2:2 \end{array}$	
$\begin{array}{ccc} Bu'OH & - & 3:2 \\ O + OH & & & 1:2 \end{array}$	
- 1:2	
$\frac{1-\operatorname{PnCH}_2\operatorname{CH}_2\operatorname{OH}}{2} = 2.1$	
$2 - Pii Cin_2 Ci$	
$C_{5}\Pi_{9}O\Pi$ $= 2.1$ $C_{1}H_{1}OH$ 1.1 1.1	
$2-Me-C_{c}H_{co}OH$ 1:1 2:3	
$3-Me-C_6H_{10}OH$ — 1:1	
PrNH ₂ — 2:1	
$Bu'NH_2 - 2:1$	
$Bu^{s}NH_{2}$ — 2:1	
$Bu'NH_2$ 1:1 1:2	
$C_5H_9NH_2$ 1:1 1:1	
$C_6H_{11}NH_2$ 1:1 1:1	
$2 - Me - C_6 H_{10} N H_2$ 1:1 1:1	
$3-Me-C_6H_{10}NH_2 - 2:1$	
$\Pr_2 NH - 4:1$	
$\frac{\text{Pr}_{2}^{\prime}\text{NH}}{\text{Pr}_{1}^{\prime}\text{NH}} = 2.1$	
$\frac{BU_2NH}{Dimension} = \frac{4.1}{1.1}$	
2-Methylpiperidine 2:1	
3-Methylpiperidine 2:1	
Pyrrolidine 1:1	
Morpholine 2:1 1:1	
Pyridine 1:1 1:1	
2-Picoline — 3:1	
3-Picoline — 3:1	
4-Picoline 1:1 3:1	
Acetone — 2:1	
Cyclopentanone 1:1 1:2	
3-Methylcyclopentanone 1:1 1:1	
Cyclohexanone 1:1 1:1	
2-Methylcyclohexanone 1:1 1:1	
3-Methylcyclonexanone 1:1 1:1	
$(\downarrow) Experimentation = 1:1 = 1:1$	
(+)-Fenchone 1:1 1:1	
(+)-Pulegone $-2:1$	
(+)-Limonene $-$ 4:1	
(-)-Menthone $-$ 3:2	
(+)-Carvone — 4:1	
Acetic acid — 2:1	
DMF — 1:1	
Propionitrile — 2:1	
Butyronitrile 1:1 1:1	
$\frac{1}{1}$	
$\frac{1}{11} \frac{1}{11} \frac$	
Dioxane 2:1 2:1	
Benzene 1:1 1:1	
Toluene — 4:1	
Verlage A.1	

the same conditions. On the other hand, **1b** still demonstrates selectivity to alcohols: small alcohols (MeOH and EtOH) and alcohols that comprise a butyl chain (BuOH, pentan-2-ol) are inefficient. To some degree, this is also true for the amine guests, although **1a** is rather efficient here, in particular with alicyclic primary amines whereas secondary amines fail, without exception.

With reference to the ketone guests, 1a and 1b are similar,

Fig. 1 An ORTEP view down the *c* axis of the crystal packing of compound $1a \cdot C_7 H_{12}O$. The guest molecule is shaded; methylene hydrogens of the guest molecule are omitted. In Figs. 1–5 the ellipsoids are drawn at 30% probability level.

except for acetone and most of the more complex terpene-type ketones that are inefficient with **1a**. Moreover acetic acid, dimethylformamide (DMF), nitroethane and Me₂SO all are inefficient with **1a**, unlike **1b**. Another remarkable finding is that **1a** enclathrates benzene, but not toluene and xylene; all are enclathrated by **1b**.

Host-guest stoichiometric ratios determined for the inclusion compounds of 1a and 1b (cf. Table 1) are also worthy of comparison. By far the most frequently observed stoichiometric ratio for the inclusions of **1a** is 1:1, only two cases show a 2:1 ratio. However, in the case of 1b, the host-guest stoichiometric ratio 2:1 is just as frequent as 1:1, and there is also a rather high quota of 4:1 and 3:1, and to a lesser degree of 2:3 and 1:2, stoichiometries at inclusion formation. It is not easy to draw conclusions from the individual stoichiometric data. Nevertheless, some general trend is quite evident, that is, within a certain class of guest compounds the larger guests prefer the larger host-guest ratio demonstrating steric effects. The 2:1 stoichiometric ratio of the inclusion compounds formed between 1a and dioxane or morpholine may be explained by the bivalency of the guest molecules.¹² The high stoichiometric ratio of 4:1 determined for some of the inclusion compounds of 1b with apolar and rather shielded secondary amines (see Table 1) suggests cluster formation of host molecules in the solid cocrystalline state.13 On the other hand, the 1:1 stoichiometric ratio preferred of the inclusion compounds 1a is indicative of the formation of concrete host-guest complexes.⁸¹

In order to learn the building principles and interaction modes of the new clathrate family including elucidation of stereochemical effects, we studied the crystal structures of two selected inclusion compounds formed between **1a** or **1b** with 3methylcyclohexanone where **1a** and **1b** are stereochemically different species (optically resolved and racemic) of the same host constitution.

X-Ray Analysis: Structure Description of Free Host (1a, 1b) and of Inclusion Compounds (1a or 1b with 3-Methylcyclohexanone).—A numbering scheme indicating relevant atoms is shown in Fig. 3(a). Views of the structures are presented in Figs.

Table 2 Summary of crystal data and experimental parameters

Compound	1a	1b	1 a •C ₇ H ₁₂ O	1 b •C ₇ H ₁₂ O
 Formula	C ₃₃ H ₂₇ NO ₃	C ₃₃ H ₂₇ NO ₃	$C_{33}H_{27}NO_{3}\cdot C_{7}H_{12}O$	$C_{33}H_{27}NO_{3}C_{7}H_{12}O$
Space group	$P2_1$	<i>P</i> 1	$P2_1$	$P2_1/a$
Z	4	2	4	4
Unit cell dimensions				
a/Å	21.1027(16)	9.3126(6)	13.0454(6)	13.0402(11)
b/Å	14.3572(8)	11.8349(20)	28.1359(34)	28.2841(44)
c/Å	8.6446(3)	13.2646(9)	8.7936(3)	8.7615(7)
x/°	90	110.655(12)	90	90
β/°	93.306(5)	108.465(8)	94.114(3)	94.605(6)
<i>v</i> /°	90	97.583(9)	90	90
$V/Å^3$	2614.7(3)	1247.7(3)	3219.3(4)	3221.1(6)
$D_{c}/g {\rm cm}^{-3}$	1.234	1.293	1.233	1.233
F(000)	1024	512	1272	1272
μ/cm^{-1}	5.87	6.15	5.88	5.87
θ/Cu-Kα	65	60	65	60
Number of reflections				
Independent	4633	3652	5607	4744
Observed $[3\sigma(I)]$	4202	2637	4710	3336
Final R and R.	0.050, 0.068	0.056, 0.063	0.055, 0.062	0.107, 0.118
Final ΔF peaks/e Å ⁻³	±0.16	± 0.32	± 0.22	± 0.74

Fig. 2 Crystal packing of compound $1b \cdot C_7 H_{12}O$, down the *c* axis. The guest molecule is shaded; hydrogens of the guest molecule are omitted.

1-7. Crystal data are given in Table 2. Geometrical parameters including hydrogen bonding are shown in Tables 3 and 4 (atomic coordinates have been deposited at the Cambridge Crystallographic Data Centre).

Molecular Structures.—The host molecules are conformationally rigid with the hydroxy group involved in an intramolecular hydrogen bond (*cf.* Table 4). Some degree of delocalization was found in the O=C-N fragment of the succinimide ring involved in the intramolecular hydrogen bond. Considerable strain is indicated by deviations of some bond distances and angles (*cf.* Table 3). The C(33)–C(37) and C(34)– C(44) distances are elongated as compared to the tabulated ¹⁴ Csp³–Csp³ bond of 1.542(11) Å. However, these bonds and the angle between the succinimide ring and the ethano bridge are consistent with those of the literature¹⁰ for the dihydroethanoanthracenedicarboximide skeleton [mean values of 1.560(4), 60.6(1) vs. 1.563(13) Å, $60.9(5)^{\circ}$]. The C(1)–C(2) distances are in the 1.503(9)–1.563(6) Å range, those of the free hosts being larger than the weighted mean of 1.546(4) Å previously reported for the lactic acid derivative.^{11c} The length of this bond is closely related to the conformation of the molecule around it: the longer the C(1)–C(2) bond the lower the C(11)–C(1)–C(2)–N(5) torsion angle (cf. Table 3).

Packing Relations.—The packing arrangements for $1a \cdot C_{7}$ - $H_{12}O$ and $1b \cdot C_7 H_{12}O$ are quite similar and they are presented in Figs. 1 and 2. The cell dimensions are analogous and it is worth noting that the space groups are $P2_1$ and $P2_1/a$ and, in addition, the two independent molecules in $P2_1$ are related by a pseudo-symmetry centre at (0.270, 0.496, 0.531). If the small differences in the relative disposition of the two parts of the molecule around the N(5)-C(2) bond (cf. Table 3) are neglected and the H(2) and $-C(1)OHPh_2$ interchange their positions in molecule B the structure of $1b \cdot C_7 H_{12}O$ could be obtained [Figs. 3(a) and 3(b)]. Moreover, the C-H... phenyl interactions joining both independent molecules are close to those found for the racemic complex, that is, a pair of molecules crystallographically related by a symmetry centre at (0.50, 0.50, 0.50) (see Fig. 3 and Table 4). These 'dimers' do not bear any significant interactions among them or between them and guest molecules.

The cell dimensions and global packing of 1a and 1b are completely different between them and with respect to their complexes (Figs. 4 and 5). Although both independent molecules in 1a are related by a pseudo-symmetry centre at (0.246, 0.108, 0.246) their relative dispositions are different from those of the complexes [Fig. 3(c)]. However, in 1b, the two centrosymmetrically related molecules [Fig. 3(d)] almost resemble the situation previously observed in the complexes [Figs. 3(a) and 3(b)] but the equivalent C-H··· phenyl interactions between them are missing.

Size and Shape of Cavities in the Crystals.—A model of interpenetrating spheres of van der Waals radii has been used for the location of cavities in the crystals.¹⁵ The guest molecules in the resolved complex (almost centrosymmetrically related) and in the racemate are allocated in two waved channels along the *a* axis (Fig. 6). The total packing coefficients for compounds **1a**, **1b**, **1a**·C₇H₁₂O and **1b**·C₇H₁₂O are 0.66, 0.68, 0.66 and 0.65 $[C_k^{all} = (V_{host} + V_{guest})/unit cell vol.]$. The presence of spherical voids of volume 23.4, 13.2 and 12.4 Å³ in all the

Fig. 3 Perspective views of the two independent host S-molecules in (a) $1a \cdot C_7 H_{12}O$, the two host enantiomers through a symmetry centre in (b) $1b \cdot C_7 H_{12}O$ and of compounds (c) 1a and (d) 1b, similar to (a) and (b). Dashed lines indicate $O-H \cdots O=C$ and $C-H \cdots$ phenyl interactions. The same projection has been used for all compounds in order to show the similarities between all pairs of molecules.

structures except 1b is consistent with the previously mentioned packing coefficient values. The lack of intermolecular interactions between host and guest together with the statistical disorder observed in both complexes agree with the low values of their local packing coefficients of 0.45 and 0.42 ($C_{\rm k}^1 = V_{\rm guesl}/V_{\rm hole}$).

Table 3 Selected geometrical parameters (Å/°)

	1a			1a •C ₇ H ₁₂ O			
 Compound	Mol A	Mol B	1b	Mol A	Mol B	1 b •C ₇ H ₁₂ O	
C(1)-C(2)	1.563(6)	1.552(5)	1.558(5)	1.537(6)	1.548(6)	1.503(9)	
N(5)-C(31)	1.388(4)	1.384(5)	1.372(4)	1.389(5)	1.372(5)	1.387(7)	
N(5)-C(35)	1.400(4)	1.404(4)	1.408(3)	1.410(5)	1.407(6)	1.396(6)	
C(31)-O(32)	1.211(5)	1.216(5)	1.220(3)	1.210(5)	1.217(6)	1.212(6)	
C(35)-O(36)	1.207(5)	1.207(5)	1.203(4)	1.204(6)	1.208(6)	1.214(7)	
C(2)-N(5)-C(31)	126.6(2)	128.1(3)	126.9(3)	126.3(3)	128.6(4)	126.2(4)	
C(2) - N(5) - C(35)	121.8(2)	119.9(3)	120.6(3)	121.6(3)	119.3(3)	121.5(4)	
O(4)-C(1)-C(2)-C(3)	46.7(5)	45.7(4)	41.1(4)	52.4(5)	48.0(5)	56.3(7)	
O(4)-C(1)-C(2)-N(5)	-78.8(4)	-80.3(4)	-85.6(3)	-73.9(4)	- 76.4(4)	-77.2(6)	
C(11)-C(1)-C(2)-N(5)	44.5(4)	43.5(4)	36.8(4)	49.8(5)	47.2(5)	49.3(7)	
C(21)-C(1)-C(2)-N(5)	165.1(3)	162.5(3)	157.5(3)	170.0(3)	167.4(4)	165.6(5)	
C(31)-N(5)-C(2)-C(3)	-66.5(4)	-68.8(5)	-70.7(4)	-61.2(5)	-72.4(4)	-67.5(7)	
C(35)-N(5)-C(2)-C(3)	107.7(4)	106.0(4)	103.5(4)	107.5(4)	96.4(4)	100.1(6)	
 C(1)-C(2)-N(5)-C(31)	61.1(4)	58.8(5)	57.9(4)	67.3(5)	54.3(6)	69.2(7)	

Table 4 Intra- and inter-molecular hydrogen bonding (Å/°)

Co	mpound	O(4) • • • O(3	32) H(4	4) •••• O(32)	O(4)–H(4)	O(4)–H(4	4) · · · O(32)
1a	(mol A)	2.705(4)	1.9	9(6)	0.73(6)	168(6)	
1a /	(mol B)	2.734(4)	2.0	2(5)	0.74(5)	160(5)	
1b		2.759(4)	1.8	3(5)	1.00(5)	152(3)	
1a-	$C_7H_{12}O \pmod{A}$	2.695(4)	1.8	7(3)	0.85(3)	166(3)	
1a-	$C_7H_{12}O \pmod{B}$	2.680(5)	1.8	8(4)	0.84(4)	160(4)	
1b-	$C_7H_{12}O$	2.681(6)	1.9) (-)	0.74(-)	161(-)	
	$X-H\cdots$ centroid	a 	Х–Н	X • • • Y	Н…Ү	X–H • • • Y	Symmetry
1a	$\frac{X-H\cdots \text{centroid}}{C(33B)-H(33B)}$	^a •• C(21−26)B	X–H 0.98(4)	X •••• Y 3.826(4)	H • • • Y 2.93(4)	X-H····Y 151(3)	Symmetry $1 - x, -\frac{1}{2} + y, 1 - x$
la lb	$\begin{array}{c} X-H\cdots \text{ centroid} \\ \hline \\ C(33B)-H(33B) \bullet \\ C(14)-H(14)\cdots \bullet \end{array}$	a → C(21–26)B C(21–26)	X-H 0.98(4) 0.96(5)	X ••• Y 3.826(4) 3.521(5)	H····Y 2.93(4) 2.62(5)	X-H····Y 151(3) 156(4)	Symmetry $1 - x, -\frac{1}{2} + y, 1 - x$ -x, 1 - y, -z
1a 1b 1a•C7H120	$ \frac{X-H\cdots \text{centroid}}{C(33B)-H(33B)} \cdot C(14)-H(14)\cdots C(33A)-H(33A) \cdot $	a ↔ C(21–26)B C(21–26) ↔ C(38–43)B	X-H 0.98(4) 0.96(5) 0.98(4)	X •••• Y 3.826(4) 3.521(5) 3.673(5)	H····Y 2.93(4) 2.62(5) 2.86(4)	X-H····Y 151(3) 156(4) 142(3)	Symmetry $1 - x, -\frac{1}{2} + y, 1 - z$ -x, 1 - y, -z x, y, z
1a 1b 1a·C ₇ H ₁₂ O 1a·C ₇ H ₁₂ O	X-H • • • • centroid C(33B)-H(33B) • C(14)-H(14) • • • • C(33A)-H(33A) • C(40A)-H(40A) •	• •• C(21–26)B C(21–26) •• C(38–43)B •• C(11–16)B	X-H 0.98(4) 0.96(5) 0.98(4) 0.96(5)	X •••• Y 3.826(4) 3.521(5) 3.673(5) 3.729(6)	H •••• Y 2.93(4) 2.62(5) 2.86(4) 2.84(5)	X-H····Y 151(3) 156(4) 142(3) 155(4)	Symmetry $1 - x, -\frac{1}{2} + y, 1 - z$ -x, 1 - y, -z x, y, z x, y, z
la lb la·C ₇ H ₁₂ O la·C ₇ H ₁₂ O la·C ₇ H ₁₂ O	X-H • • • • centroid C(33B)-H(33B) • C(14)-H(14) • • • • C(33A)-H(33A) • C(40A)-H(40A) • C(34B)-H(34B) •	•• C(21–26)B C(21–26) •• C(38–43)B •• C(11–16)B •• C(38–43)A	X-H 0.98(4) 0.96(5) 0.98(4) 0.96(5) 0.90(4)	X •••• Y 3.826(4) 3.521(5) 3.673(5) 3.729(6) 3.711(5)	H ···· Y 2.93(4) 2.62(5) 2.86(4) 2.84(5) 2.94(4)	X-H····Y 151(3) 156(4) 142(3) 155(4) 144(4)	Symmetry $1 - x, -\frac{1}{2} + y, 1 - z$ -x, 1 - y, -z x, y, z x, y, z x, y, z x, y, z
	$\begin{array}{c} X-H\cdots centroid\\ \hline\\ C(33B)-H(33B)\cdot\\ C(14)-H(14)\cdots C\\ C(33A)-H(33A)\cdot\\ C(40A)-H(40A)\cdot\\ C(34B)-H(34B)\cdot\\ C(41B)-H(41B)\cdot\\ \end{array}$	• C(21–26)B C(21–26) • C(38–43)B • C(11–16)B • C(38–43)A • C(11–16)A	X-H 0.98(4) 0.96(5) 0.98(4) 0.96(5) 0.90(4) 1.00(5)	X •••• Y 3.826(4) 3.521(5) 3.673(5) 3.729(6) 3.711(5) 3.555(7)	H •••• Y 2.93(4) 2.62(5) 2.86(4) 2.84(5) 2.94(4) 2.73(5)	X-H····Y 151(3) 156(4) 142(3) 155(4) 144(4) 140(4)	Symmetry $1 - x, -\frac{1}{2} + y, 1 - z$ -x, 1 - y, -z x, y, z x, y, z x, y, z x, y, z x, y, z x, y, z
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} X-H\cdots centroid\\ \hline\\ C(33B)-H(33B) \cdot\\ C(14)-H(14)\cdots C\\ C(33A)-H(33A) \cdot\\ C(40A)-H(40A) \cdot\\ C(34B)-H(34B) \cdot\\ C(41B)-H(41B) \cdot\\ C(33)-H(33)\cdots C\\ \end{array}$	a • C(21-26)B C(21-26) • C(38-43)B • C(11-16)B • C(38-43)A • C(11-16)A C(38-43)	X-H 0.98(4) 0.96(5) 0.98(4) 0.96(5) 0.90(4) 1.00(5) 0.95(5)	X •••• Y 3.826(4) 3.521(5) 3.673(5) 3.729(6) 3.711(5) 3.555(7) 3.704(6)	H •••• Y 2.93(4) 2.62(5) 2.86(4) 2.84(5) 2.94(4) 2.73(5) 2.90(5)	X-H····Y 151(3) 156(4) 142(3) 155(4) 144(4) 140(4) 143(4)	Symmetry $1 - x, -\frac{1}{2} + y, 1 - z$ x, y, z x, y, z x, y, z x, y, z x, y, z x, y, z x, y, z 1 - x, 1 - y, 1 - z

^a C(11–16), C(21–26), C(38–43) and C(45–50) stand for the centroids of the corresponding rings.

Fig. 4 Crystal packing of la down the c axis

Summary and Conclusions.—The amino acid alanine, both in optically resolved and racemic form, when modified by the introduction of a rigid tetracyclic 9,10-dihydro-9,10-ethanoanthracene framework as a clathrate-promoting group ¹⁰ yields host compounds **1a** and **1b** that form crystalline inclusions with numerous organic molecules ranging from protic dipolar to apolar compounds (78 different examples). The composition of the inclusion materials and inclusion efficiencies depend on the optical form of the host. Certainly, there is no guest molecule enclathrated by the optically resolved host **1a** that does not undergo crystalline inclusion with racemic **1b**, but **1b** yields inclusions in a much broader sense (56 vs. 22 inclusion species). Corresponding inclusion compounds formed of **1a** and **1b**, in most cases, show the same stoichiometric ratio indicating similar packing behaviour in the cocrystalline state.

Indeed, the crystal structures of the 1:1 complexes between 1a or 1b and 3-methylcyclohexanone are similar, with the two independent molecules, in case of 1a, almost related by a symmetry centre and host-host inter $C-H \cdots$ phenyl interactions closely related in both cases. By way of contrast, only one $C-H \cdots$ phenyl interaction is present in the structures of the uncomplexed host compounds 1a and 1b indicating an unfavourable packing state. Moreover, the crystal packings of uncomplexed host compounds 1a and 1b are different with regard to relative molecular dispositions, and hence the different inclusion behaviour. The host hydroxy groups are

Fig. 5 Crystal packing of 1b down the a axis

Fig. 6 A section through z = 0 of the continuous channel of $1b \cdot C_7 H_{12}O$ (two in the unit cell) that accommodate the guest molecules. A 0.3 Å grid for the holes search and a rolling sphere of 1.4 Å radius were used for smoothing the host clefts which are drawn in grey while the van der Waals interior of atoms are shown in black.

Fig. 7 A view of the guest molecule showing the R/S configurational (1a- $C_7H_{12}O$) and conformational (1b- $C_7H_{12}O$) disorder and the numbering system

always involved in O–H \cdots O intramolecular hydrogen bonds showing the host molecules already to be in a favourable binding state that renders superfluous a significant host–guest contact. This is a critical point for future host development along the line presently introduced including chiral selectors.¹¹

Experimental

cis-9,10-*Dihydro*-9,10-*ethanoanthracene*-11,12-*dicarboxylic* acid anhydride **4**. Procedure of Diels-Alder; ¹⁶ colourless crystals (43%), m.p. 260–262 °C (from acetone) (lit., ¹⁶ 262 °C).

Alanine ethyl ester hydrochlorides **2a**, **2b**. Prepared by the modified procedure of Boissonnas et al.¹⁷ To a suspension of the amino acid (39.2 g, 0.44 mol) in anhydrous EtOH (260 cm³) thionyl chloride (50 cm³, 0.68 mol) was added at room temp. The mixture was heated at reflux for 2 h. After being cooled to room temp., the solvent was removed under reduced pressure. The crude product was dissolved in EtOH and Et₂O was added for crystallization. **2a**: colourless crystals (62.7 g, 93%), m.p. 78 °C (lit.,¹⁸ 76 °C); $[\alpha]_{D}^{20}$ + 2.8 (c 7.37 in H₂O) [lit.,¹⁸ + 3.1 (c 2.5 in H₂O)]. **2b**: colourless crystals (65.2 g, 97%), m.p. 84–85 °C (lit.,¹⁹ 86.5–87 °C).

2-Amino-1,1-diphenylpropan-1-ols **3a**, **3b**. Grignard reaction as described for **3a**;²⁰ using a fivefold excess of Grignard reagent instead of an eightfold excess. **3a**: colourless powder (57%), m.p. 100–102 °C (lit.,²¹ 101.5–102.5 °C); $[\alpha]_{D}^{20}$ -85.9 (c 2.77 in CHCl₃) [lit.,²⁰ -82.4 (c 0.814 in CHCl₃)]. **3b**: colourless powder (46%), m.p. 94–98 °C.

2-(9,10-Dihydro-9,10-ethano-11,12-dicarboximido)-1,1-diphenylpropan-1-ols 1a, 1b. A mixture of anhydride 4 (27.6 g, 0.1 mol) and the corresponding aminopropanol (3a, 3b) (22.7 g, 0.1 mol) in DMF (250 cm³) was heated at reflux ²² for 6 h. After being cooled to room temp., the solution was added to ice-water (1 dm³) to yield a white precipitate which was collected, filtered, washed (H₂O), and dried. 1a: colourless crystals (14.8 g, 61%), m.p. 206-208 °C (from EtOH) (Found: C, 81.35; H, 5.68; N, 2.95. $C_{33}H_{27}NO_3$ requires C, 81.63; H, 5.60; N, 2.88%); $[\alpha]_{D}^{20}$ -54.9 (c 5.015 in CHCl₃); $v_{max}(KBr)/cm^{-1}$ 3350 (OH), 2960 (CH), 1768 and 1688 (C=O), 1455 and 1405 (CH, OH), 1356, 1163 (CO), 1119, 1026, 906 (OH) and 754 and 701 (Ar); δ_H(250 MHz; CDCl₃) 0.39 (3 H, d, J 7 Hz, Me), 2.76, 2.98 (2 H, dd, J9 and 4 Hz, CH), 4.66, 4.74 (2 H, d, J4 Hz, CH), 4.99 (1 H, q, J7 Hz, NCH), 5.89 (1 H, s, OH) and 6.99-7.57 (18 H, m, ArH); $\delta_{\rm C}(62.89 \text{ MHz}; {\rm CDCl}_3)$ 11.06, 45.16, 45.44, 46.66, 55.44, 78.61, 124.05, 124.78, 124.85, 124.91, 125.37, 126.62, 126.93, 127.04, 127.80, 128.02, 138.26, 138.40, 140.87, 141.01, 144.08, 145.74, 176.49 and 180.09; m/z (FAB; mNBA) 486.2 (M + H). 1b: colourless powder (16.5 g, 68%), m.p. 199-200 °C (from EtOH) (Found: C, 81.38; H, 5.67; N, 2.90. C₃₃H₂₇NO₃ requires C, 81.63; H, 5.60; N, 2.88%); spectroscopic data of the racemic compound 1b correspond to the optically resolved species 1a.

Preparation of the Crystalline Inclusion Compounds. General Procedure.—They were obtained by recrystallization of the corresponding host compound from a minimum amount of the respective guest solvent. The crystals formed were collected by suction filtration, washed with an inert solvent (MeOH), and dried (1 h, 15 Torr, room temp.). Host–guest stoichiometry was determined by ¹H NMR integration. Data for each compound are given in Table 1.

Crystallography. (a) Sample preparation. Suitable crystals for X-ray diffraction were prepared by the slow cooling of a solution of the corresponding host compound in the guest solvent (3-methylcyclohexanone). Single crystals of the free hosts were obtained from EtOH for **1a** and from BuOH for **1b**.

(b) X-Ray structure determination. The experimental details and the most relevant parameters of the refinement are given in Table 2. All crystals were sealed in Lindemann glass capillaries to prevent decomposition during data collection. Two standard reflections monitored every 90 min exhibited a linear decrease of 4, 1, 1 and 12% for compounds **1a**, **1b**, **1a**·C₇H₁₂O and **1b**·C₇H₁₂O, respectively. The structures were solved by direct methods, SIR88²³ and DIRDIF92.²⁴ The non-hydrogen atoms were refined anisotropically and the hydrogen atoms were included as isotropic. Five and six reflections for compounds **1a**

and $1b \cdot C_7 H_{12}O$, respectively, were affected by secondary extinction and were considered as unobserved in the last cycles of refinement. Most of the calculations were performed on a VAX6410 computer using the XRAY80 system.²⁵ The atomic scattering factors were taken from the International Tables for X-Ray Crystallography, vol. IV.²⁶ All the guest molecules appear to be disordered. The structure of $1b \cdot C_7 H_{12}O$ was not determined as precisely as those of the other compounds owing to disorder and to the quality of the crystals. The two independent molecules in 1a·C₇H₁₂O are disordered in such a way that both enantiomers are present in the same cavity sharing all atoms except 2 and 5. The occupancy factors are 0.73(2)/0.27(2) for R/S enantiomers and analogously 0.71(2)/0.29(2) for S/R ones. However, only conformational disorder is present in $1b \cdot C_7 H_{12}O$, the population parameters being 0.67(2) and 0.37(2) (Fig. 7). H atoms were found directly in difference maps except some of guest molecules. The absolute configuration was not determined since it was known by synthesis.

Supplementary Data.—Atomic coordinates for the structures of Table 2 have been deposited with the Cambridge Crystallographic Data Centre. For details of the CCDC deposition scheme see 'Instructions for Authors (1994),' J. Chem. Soc., Perkin Trans. 2, issue 1.

Acknowledgements

E. W. thanks the *Deutsche Forschungsgemeinschaft* (SFB 334) and the *Fonds der Chemischen Industrie* and C. F. F. thanks the *CICYT* (Spain: PB90–0070) for financial support.

References

- 1 Supramolecular Chemistry I—Directed Synthesis and Molecular Recognition, ed. E. Weber, in Topics in Current Chemistry, Springer-Verlag, Berlin/Heidelberg, 1993, vol. 165; F. Vögtle, Supramolecular Chemistry, Wiley, Chichester, 1991; Advances in Supramolecular Chemistry, ed. G. W. Gokel, JAI Press, London, 1990, vol. 1.
- 2 (a) Inclusion Compounds, ed. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Academic Press, London, 1984, vols. 1-3; University Press, Oxford, 1991, vol.4; (b) Molecular Inclusion and Molecular Recognition—Clathrates I and II, ed. E. Weber, in Topics in Current Chemistry, Springer-Verlag, Berlin/Heidelberg, 1987 and 1988, vols. 140 and 149.
- 3 G. R. Desiraju, Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989, Materials Science Monographs, vol. 54.
- 4 F. Toda, Pure Appl. Chem., 1990, 62, 417; E. Weber, K. Skobridis, A. Wierig, S. Stahi, L. R. Nassimbeni and M. L. Niven, Angew. Chem., 1993, 105, 616; Angew. Chem., Int. Ed. Engl., 1993, 32, 606.
- 5 Organic Solid State Chemistry, ed. G. R. Desiraju, Elsevier, Amsterdam, 1987, Studies in Organic Chemistry, vol. 32; D. Seebach, Angew. Chem., 1990, 102, 1363; Angew. Chem., Int. Ed. Engl., 1990, 29, 1320.

- 6 J.-M. Lehn, Angew. Chem., 1990, 102, 1347; Angew. Chem., Int. Ed. Engl., 1990, 29, 1304; G. A. Ozin, Adv. Mater., 1992, 4, 612; P. J.
 Fagan and M. D. Ward, Spektr. Wiss., 1992, 56.
- 7 A. Ehlen, C. Wimmer, E. Weber and J. Bargon, Angew. Chem., 1993, 105, 116; Angew. Chem., Int. Ed. Engl., 1993, 32, 110.
- 8 (a) E. Weber and M. Czugler, ref. 2(b), 1988, vol. 149; (b) E. Weber, J. Mol. Graphics, 1989, 7, 12; (c) E. Weber, ref. 2(a), 1991, vol. 4, p. 188.
- 9 E. Weber, I. Csöregh, J. Ahrendt, S. Finge and M. Czugler, J. Org. Chem., 1988, 53, 5831; (b) I. Csöregh, M. Czugler, A. Ertan, E. Weber and J. Ahrendt, J. Incl. Phenom., 1990, 8, 275; I. Csöregh, M. Czugler, S. Finge and E. Weber, Bull. Chem. Soc. Jpn., 1991, 64, 1971; I. Csöregh, O. Gallardo, E. Weber, S. Finge and C. Reutel, Tetrahedron: Asymmetry, 1992, 3, 1555.
- 10 E. Weber, S. Finge and I. Csöregh, J. Org. Chem., 1991, 56, 7281.
- 11 (a) E. Weber, C. Wimmer, A. L. Llamas-Saiz and C. Foces-Foces, J. Chem. Soc., Chem. Commun., 1992, 733; see also NEWS, Chem. Ind. (London), 1992, 364; (b) E. Weber, N. Dörpinghaus, C. Wimmer, Z. Stein, H. Krupitsky and I. Goldberg, J. Org. Chem., 1992, 57, 6825; (c) A. L. Llamas-Saiz, C. Foces-Foces, E. Weber and C. Wimmer, Supramol. Chem., 1993, 2, 215; (d) E. Weber and C. Wimmer, Chirality, 1993, 5, 315.
- 12 I. Csöregh, E. Weber, L. R. Nassimbeni, O. Gallardo, N. Dörpinghaus, A. Ertan and S. A. Bourne, J. Chem. Soc., Perkin Trans. 2, 1993, 1775.
- 13 E. Weber, N. Dörpinghaus and I. Csöregh, J. Chem. Soc., Perkin Trans. 2, 1990, 2167.
- 14 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
- 15 F. H. Cano and M. Martinez-Ripoll, J. Mol. Struct. (Theochem.), 1992, 258, 139.
- 16 O. Diels and K. Alder, Liebigs Ann. Chem., 1949, 565, 204.
- 17 R. A. Boissonnas, S. Guttmann, R. L. Huguenin, P.-A. Jaquenond and E. Sandrin, *Helv. Chim. Acta*, 1958, 41, 1867.
- 18 D. A. Rowland and G. T. Young, J. Chem. Soc., 1952, 3937.
- 19 T. B. Johnson and A. A. Ticknor, J. Am. Chem. Soc., 1918, 40, 636.
- 20 S. Itsumo, M. Nakano, K. Miyazaki, H. Masudo, K. Ito, A. Hirao and S. Nakahama, J. Chem. Soc., Perkin Trans. 1, 1985, 2039.
- 21 A. McKenzie, R. Roger and G. O. Wills, J. Chem. Soc., 1926, 779.
 22 W. F. Bruce, US Pat. 3 377 353, 1968; Chem. Abstr., 1968, 69, 67151t.
- 23 M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, *SIR88: J. Appl. Crystallogr.*, 1989, 22, 389.
- 24 P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, *The Dirdif Program System, Technical Report of the Crystallography Laboratory*, University of Nijmegen, Netherlands, 1992.
- 25 J. M. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck and H. Flack, *The X-Ray System. Technical Report TR-446*, Computer Science Center, University of Maryland, 1976.
- 26 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, UK, 1974, vol. IV.

Paper 4/01392A Received 9th March 1994 Accepted 23rd March 1994